

Tetrahedron Letters 43 (2002) 6925-6927

Remarkable rate acceleration of the solvent-free Baeyer–Villiger reaction on the surface of NaHCO₃ crystals for sterically congested cyclic and acyclic ketones

Takayuki Yakura, Tomoko Kitano, Masazumi Ikeda and Jun'ichi Uenishi*

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan Received 11 July 2002; revised 31 July 2002; accepted 2 August 2002

Abstract—Baeyer–Villiger reactions of sterically crowded cyclic and acyclic ketones are remarkably accelerated by carrying out the reactions under solvent-free conditions in the presence of powdered NaHCO₃. The corresponding lactones and esters have been obtained in excellent yields. © 2002 Elsevier Science Ltd. All rights reserved.

The Baeyer-Villiger reaction is an oxidative transformation of ketones into esters by peracid, which is important for functional group transformation as well as for ring expansion in organic synthesis.¹ Baeyer-Villiger reactions of cyclic ketones into lactones have been employed extensively for stereocontrolled syntheses of substituted heterocycles and functionalized carbon chains. Because the reaction is reliable for controlling the regio- and stereochemistries of the product, it is widely used as a key ring expansion step for the synthesis of natural products, including antibiotics, steroids, and pheromones.^{1b,2,3} The rate of the Baeyer–Villiger reaction depends on the sizes of substituents adjacent to the carbonyl group. It has been reported that the oxidation reaction of the ketone having a bulky group adjacent to the carbonyl requires a long time.⁴⁻⁶ In this letter, we describe a remarkable acceleration in the rate of the Baeyer-Villiger reaction for sterically congested ketones by the addition of powdered sodium bicarbonate under solvent-free conditions.

Keywords: Baeyer–Villiger reactions; stereospecific reactions; lactones; esters; solvent-free reaction.

When we examined the Baeyer-Villiger reaction of highly substituted cyclopentanone $(1)^{7,8}$ with mchloroperbenzoic acid (m-CPBA) in CH₂Cl₂ at room temperature, the rate of the reaction was quite slow and eventually the corresponding δ -lactone (2)⁸ was obtained regio- and stereoselectively in 75% yield after 1 week. Several other conditions have been investigated and the results are shown in Table 1. The addition of $NaHCO_3^9$ was not effective for accelerating the rate of the reaction of 1 with *m*-CPBA in CH_2Cl_2 (entry 2). This poor reactivity of 1 may be explained in terms of the steric hindrance to the carbonyl face. Bulky 2-TBDMSoxymethyl and 4-TBDMSoxy groups cover both the faces of the carbonyl group, thus preventing nucleophilic attack of *m*-CPBA. Refluxing the mixture for 4 days resulted in decomposition of 1 mainly (entry 3). A solid state reaction of crystalline 1 with m-CPBA developed by Toda and co-workers^{10,11} shortened the reaction time to 4 days and afforded 2 in 67% yield along with a 31% recovery of 1 (entry 4). A mixture of 1, 2 equiv. of m-CPBA, and 1 equiv. of NaHCO₃ was well ground and allowed to stand at room temperature for 4 days, giving 74% of 2 and 24% of 1 (entry 5). We found that further acceleration of the reaction was achieved by the following technical improvement. Thus, finely powdered NaHCO₃ was suspended in a CH₂Cl₂ solution of 1 and *m*-CPBA and then the whole mixture was concentrated. The residue was allowed to stand at room temperature for 3 days to give 2 in 95% yield (entry 7). A similar reaction in the absence of $NaHCO_3$ gave 2 in 78% yield after 4 days (entry 6). These results suggest that spreading the substrate ketone and oxidant uniformly on the surface of NaHCO₃ is important for acceleration of the reaction. We carefully examined the

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01629-5

^{*} Corresponding author. Tel.: +81-75-595-4665; fax: +81-75-595-4763; e-mail: juenishi@mb.kyoto-phu.ac.jp

Entry	m-CPBA (equiv.)	NaHCO ₃ (equiv.)	Solvent	Temperature	Time	Yield of 2 (%)	Recovery of 1 (%)
1	3	None	CH ₂ Cl ₂	Rt	7 days	75	6
2	3	3	CH_2Cl_2	Rt	7 days	74	24
3	3	3	CH_2Cl_2	Reflux	4 days	26	16
4 ^a	2	None	None	Rt	4 days	67	31
5 ^a	2	1	None	Rt	4 days	74	24
6 ^b	2	None	None	Rt	4 days	78	15
7 ^b	2	1	None	Rt	3 days	95	0
8°	2	1	None	Rt	10 h	96	0

Table 1. Baeyer-Villiger reactions of 1

^a The reaction mixture was ground with an agate pestle and mortar once a day.¹⁰

^b To a solution of ketone and *m*-CPBA in CH₂Cl₂ was added NaHCO₃ and then the solvent was evaporated off.

^c Ref. 12.

reaction and found that the rate of the reaction gradually decreases over 3 h. Interestingly, dissolving the solid reactant in CH_2Cl_2 and immediate evaporation of the solvent restarted the reaction, but the reaction nearly stopped again after 3 h. Repetition of this process twice every 3 h (ca. 10 h) eventually gave 2 in 96% yield (entry 8).¹²

In a solid state Baeyer–Villiger reaction, grinding the substrate with the explosive *m*-CPBA could be danger-

Table 2. NaHCO₃-promoted solvent-free Baeyer–Villiger reactions of ketones

Entry	Ketone	Product	Solvent-free in the presence of NaHCO ₃ ^{a}		in CH ₂ Cl ₂	
Endy	netone	Troduct	Time	Yield (%)	Time	Yield (%) ^b
1		OTBDPS	10 min	quant	10 min	28 ^{c,d} (72)
2	O OTBDA	PS OTBDPS Me 4b	4 h	93	4 h	13 ^c (85)
3	CO ₂ Et Me 3c	O CO ₂ Et Me 4c	3 h	96	5 d ^{c,e}	59 ^{c,e}
4	O Me 3d	Me CO ₂ Me 4d	1 h	83	6 h ^f	65 ^f
5 M	O OTBDF Ne Bn 3e	PS OTBDPS Me O Ho O Me Bn 4e	24 h	99		
6		Me 4f	11 h	96	24 h ^g	12 ^g

^a According to the typical procedure in Ref. 12.

^b Yields in parentheses indicate the recovery of ketones.

^c The reaction was performed in the presence of NaHCO₃ at room temperature.

^d Ref. 13.

^e Ref. 5a.

^f The reaction was carried out in the presence of Li₂CO₃ at reflux.⁶

^g CHCl₃ was used as a solvent.¹⁰

ous. Such a process, however, is not required in our method. Although we have not experienced any accidents, we recommend that for safety a small volume of solvent should be left during the evaporation process and then the remaining mixture is allowed to solidify by spontaneous evaporation of the solvent in a flask or on a large plate.

This method is quite general and effective for Baeyer-Villiger reactions of hindered ketones. Some additional examples under these new conditions as well as the reactions carried out in CH₂Cl₂ are shown in Table 2.⁸ The crystalline α -substituted cyclopentanone (3a) reacted with m-CPBA in the presence of NaHCO₃ under the new solvent-free conditions for only 10 min to give 4a in quantitative yield, whereas a similar reaction of 3a in CH₂Cl₂ for 10 min gave 28% of 4a along with 72% of unreacted 3a (entry 1).¹³ A similar reaction of the α, α -disubstituted cyclopentanone (3b) was completed within 4 h by the new procedure and afforded 4b in 93% yield, while the oxidation of 3b in CH_2Cl_2 for the same reaction time was not completed and gave only 13% of 4b and 85% of unreacted 3b (entry 2). The oily cyclopentanone (3c) having an electron-withdrawing ester group at the α -position, for which the Baeyer-Villiger reaction in CH2Cl2 in the presence of NaHCO₃ required 5 days,^{5a} was also oxidized under the new conditions within 3 h to produce lactone (4c) in 96%. The Baeyer-Villiger reaction of cyclohexanone (3d), which is a key step of the efficient synthesis of 4,4-disubstituted γ -butyrolactones,⁶ was accelerated by using our new procedure (entry 4). An acyclic ketone (3e) having quaternary carbon at the α -position was allowed to react under the new conditions for 24 h to give 99% of the corresponding ester (4e) exclusively (entry 5). A similar acceleration was observed in the case of the reaction of the aromatic ketone (3f) (entry 6).

In conclusion, an inorganic base, $NaHCO_3$, accelerated the solvent-free Baeyer–Villiger reaction of ketones with bulky substituents to give the corresponding esters and lactones in excellent yields. Repetition of a dissolution and evaporation technique every 3 h is extremely effective for shortening the reaction time.

Acknowledgements

The authors wish to thank Miss Reiko Hirabayashi for her technical support and also thank Professor Yoshihiko Ito for helpful discussions.

References

1. For recent reviews, see: (a) Krow, G. R. In *Organic Reactions*; Paquette, L. A., Ed.; John Wiley & Sons, Inc:

New York, 1993; Vol. 43, pp. 251–798; (b) Krow, G. R. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I.; Ley, S. V., Ed.; Pergamon Press: Oxford, 1991; Vol. 7, pp. 671–688; (c) Strukul, G. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 1198–1209; (d) Renz, M.; Meunier, B. *Eur. J. Org. Chem.* **1999**, 737–750.

- (a) Chida, N. J. Synth. Org. Chem. Jpn. 2000, 58, 642– 653; (b) Beauhaire, J.; Ducrot, P.-H. Bioorg. Med. Chem. 1996, 4, 413–418; (c) Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59, 3575–3584; (d) de Mattos, M. C. S.; Kover, W. B. Synth. Commun. 1993, 23, 2895– 2907; (e) Liu, Z.-Y.; He, L.; Zheng, H. Synlett 1993, 191–192.
- (a) Hagiwara, H.; Nagatomo, H.; Kazayama, S.; Sakai, H.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1 1999, 457–459; (b) Hagiwara, H.; Nagatomo, H.; Yoshii, F.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1 2000, 2645–2648.
- Corey, E. J.; Kim, S.; Yoo, S.; Nicolaou, K. C.; Melvin, L. S., Jr.; Brunelle, D. J.; Falck, J. R.; Trybulski, E. J.; Lett, R.; Sheldrake, P. W. J. Am. Chem. Soc. 1978, 100, 4620–4622.
- (a) Nishimura, Y.; Mori, K. Eur. J. Org. Chem. 1998, 233–236; (b) Solladié, G.; Boeffel, D.; Maignan, J. Tetrahedron 1996, 52, 2065–2074.
- Pinheiro, S.; de Farias, F. M. C.; Saraiva, A. S.; Campos, M. P. A. *Tetrahedron: Asymmetry* **1998**, *9*, 2031–2034.
- 7. Compound 1 was easily prepared from (2S,3S,4R)-4-*tert*butyldimethylsilyloxy - 2 - methoxycarbonyl - 3 - methyl - 2cyclopentanone¹⁴ in 95% yield in three steps: (i) reduction with lithium aluminum hydride; (ii) monosilylation with TBDMSCl and imidazole; (iii) oxidation with tetrapropylammonium perruthenate.
- 8. All new compounds reported herein exhibited satisfactory spectral data.
- Sodium bicarbonate is known to promote the Baeyer-Villiger reaction, see: Whitesell, J. K.; Matthews, R. S.; Helbling, A. M. J. Org. Chem. 1978, 43, 784–786.
- Toda, F.; Yagi, M.; Kiyoshige, K. J. Chem. Soc., Chem. Commun. 1988, 958–959 and also see Ref. 3.
- For a review of solvent-free reactions, see: Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025–1074.
- 12. Typical procedure is as follows: to a solution of ketone (1 mmol) and *m*-CPBA (2 mmol) in CH_2Cl_2 (3–5 ml) was added finely ground NaHCO₃ (1–2 mmol) and then the suspension was concentrated to be a solid residue. When the reaction was not completed after 3 h, a small volume of CH_2Cl_2 was added to the mixture and the whole mixture was concentrated to a solid. This process (a dissolution and evaporation) was repeated every 3 h.
- Taylor et al. reported that the similar reaction in CH₂Cl₂ in the presence of NaHCO₃ at rt for 3.75 h gave the lactone in 100% yield, see: Taylor, R. J. K.; Wiggins, K.; Robinson, D. H. Synthesis 1990, 589–590.
- Yakura, T.; Tanaka, K.; Kitano, T.; Uenishi, J.; Ikeda, M. *Tetrahedron* 2000, *56*, 7715–7721.